Formation of 8-hydroxydeoxyguanosine and cell-cycle arrest in the rat liver via generation of oxidative stress by phenobarbital: association with expression profiles of p21(WAF1/Cip1), cyclin D1 and Ogg1.
نویسندگان
چکیده
To evaluate the risk of exposure to so-called non-genotoxic chemicals and elucidate mechanisms underlying their promoting activity on rat liver carcinogenesis the formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG), cytochrome P-450 (P-450) and hydroxyl radicals induction, DNA repair and alteration to cellular proliferation and apoptosis in the rat liver were investigated during 2 weeks of phenobarbital (PB) administration at a dose of 0.05%. Significant increase of hydroxyl radical levels by day 4 of PB exposure accompanied the accumulation of 8-OHdG in the nucleus and P-450 isoenzymes CYP2B1/2 and CYP3A2 in the cytoplasm of hepatocytes. Conspicuous elevation of 8-OHdG and apoptosis in the liver tissue were associated with reduction of the proliferating cell nuclear antigen (PCNA) index after 8 days of PB application. Thereafter, 8-OHdG levels decreased with an increase in mRNA expression for the 8-OHdG repair enzyme, DNA glycosylase 1 (Ogg1). Analysis with LightCycler quantitative 2-step RT-PCR demonstrated induction of cyclin D1 (CD1) and p21(WAF1/Cip1) mRNA expression on days 4 and 6, respectively, preceding marked elevation of PCNA and apoptotic indices. These results suggest that similar to genotoxic, non-genotoxic chemicals might induce reversible alteration to nuclear 8-OHdG in the rat liver after several days of continuous application; however, by a different mechanism. Increased 8-OHdG formation is caused by developing oxidative stress or apoptotic degradation of DNA and coordinated with enhanced expression of CD1 mRNA and cell proliferation, subsequent increase of p21(WAF1/Cip1) mRNA expression, cell-cycle arrest and apoptosis, while activation of 8-OHdG repair mechanisms contributes to protection of tissue against reactive oxygen species-induced cell death.
منابع مشابه
بررسی ایمونوهیستوشیمیایی نشانگرهای p1 و cyclin D1 در آملوبلاستومای فکین
Background and Aim: The cell cycle is an important event in tumor growth and differentiation and several molecules are involved in this process. The aim of this study was to evaluate the expression of cyclin D1 (a cell cycle inducer) and p21 (a cell cycle inhibitor) in ameloblastoma of the jaws. Materials and Methods: In this cross-sectional study, 40 cases of ameloblastoma were selected from t...
متن کاملP-96: Appositional Expressions of Cyclin D1 and E2F1 Gene Machineries in Mycooestrogen Zeralenone-Induced Apoptosis in Testicular Tissue of Rats
Background: Zearalenone (ZEA) is known as a nonsteroidal oestrogenic mycotoxin produced by different species of Fusarium fungi. ZEA is known for its competitive effects with the natural 17-β estradiol to bind with the specific binding sites of the estrogen receptors (Ers). On the other hand, the cyclin family (especially cyclin D1) and E2F1 genes are the checkpoint genes involved in cell cycle....
متن کاملApoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation.
p21(Cip1/WAF1) inhibits cell-cycle progression by binding to G1 cyclin/CDK complexes and proliferating cell nuclear antigen (PCNA) through its N- and C-terminal domains, respectively. The cell-cycle inhibitory activity of p21(Cip1/WAF1) is correlated with its nuclear localization. Here, we report a novel cytoplasmic localization of p21(Cip1/WAF1) in peripheral blood monocytes (PBMs) and in U937...
متن کاملPhotodynamic therapy results in induction of WAF1/CIP1/P21 leading to cell cycle arrest and apoptosis.
Photodynamic therapy (PDT) is a promising new modality that utilizes a combination of a photosensitizing chemical and visible light for the management of a variety of solid malignancies. The mechanism of PDT-mediated cell killing is not well defined. We investigated the involvement of cell cycle regulatory events during silicon phthalocyanine (Pc4)-PDT-mediated apoptosis in human epidermoid car...
متن کاملAberrant Regulation of HDAC2 Mediates Proliferation of Hepatocellular Carcinoma Cells by Deregulating Expression of G1/S Cell Cycle Proteins
Histone deacetylase 2 (HDAC2) is crucial for embryonic development, affects cytokine signaling relevant for immune responses and is often significantly overexpressed in solid tumors; but little is known about its role in human hepatocellular carcinoma (HCC). In this study, we showed that targeted-disruption of HDAC2 resulted in reduction of both tumor cell growth and de novo DNA synthesis in He...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carcinogenesis
دوره 23 2 شماره
صفحات -
تاریخ انتشار 2002